extension | φ:Q→Aut N | d | ρ | Label | ID |
C33⋊1(C4○D4) = (S3×C6).D6 | φ: C4○D4/C2 → C23 ⊆ Aut C33 | 24 | 8+ | C3^3:1(C4oD4) | 432,606 |
C33⋊2(C4○D4) = D6.S32 | φ: C4○D4/C2 → C23 ⊆ Aut C33 | 48 | 8- | C3^3:2(C4oD4) | 432,607 |
C33⋊3(C4○D4) = D6.4S32 | φ: C4○D4/C2 → C23 ⊆ Aut C33 | 48 | 8- | C3^3:3(C4oD4) | 432,608 |
C33⋊4(C4○D4) = D6.3S32 | φ: C4○D4/C2 → C23 ⊆ Aut C33 | 24 | 8+ | C3^3:4(C4oD4) | 432,609 |
C33⋊5(C4○D4) = D6⋊S3⋊S3 | φ: C4○D4/C2 → C23 ⊆ Aut C33 | 48 | 8- | C3^3:5(C4oD4) | 432,610 |
C33⋊6(C4○D4) = D6.6S32 | φ: C4○D4/C2 → C23 ⊆ Aut C33 | 48 | 8- | C3^3:6(C4oD4) | 432,611 |
C33⋊7(C4○D4) = Dic3.S32 | φ: C4○D4/C2 → C23 ⊆ Aut C33 | 24 | 8+ | C3^3:7(C4oD4) | 432,612 |
C33⋊8(C4○D4) = C3×D12⋊5S3 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:8(C4oD4) | 432,643 |
C33⋊9(C4○D4) = C3×D12⋊S3 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:9(C4oD4) | 432,644 |
C33⋊10(C4○D4) = C3×D6.D6 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:10(C4oD4) | 432,646 |
C33⋊11(C4○D4) = C3×D6.6D6 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:11(C4oD4) | 432,647 |
C33⋊12(C4○D4) = (C3×D12)⋊S3 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 144 | | C3^3:12(C4oD4) | 432,661 |
C33⋊13(C4○D4) = D12⋊(C3⋊S3) | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:13(C4oD4) | 432,662 |
C33⋊14(C4○D4) = C12.39S32 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:14(C4oD4) | 432,664 |
C33⋊15(C4○D4) = C12.40S32 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:15(C4oD4) | 432,665 |
C33⋊16(C4○D4) = C12.73S32 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:16(C4oD4) | 432,667 |
C33⋊17(C4○D4) = C12.57S32 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 144 | | C3^3:17(C4oD4) | 432,668 |
C33⋊18(C4○D4) = C12.58S32 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:18(C4oD4) | 432,669 |
C33⋊19(C4○D4) = C12⋊S3⋊12S3 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:19(C4oD4) | 432,688 |
C33⋊20(C4○D4) = C12.95S32 | φ: C4○D4/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:20(C4oD4) | 432,689 |
C33⋊21(C4○D4) = C3×D6.3D6 | φ: C4○D4/C22 → C22 ⊆ Aut C33 | 24 | 4 | C3^3:21(C4oD4) | 432,652 |
C33⋊22(C4○D4) = C3×D6.4D6 | φ: C4○D4/C22 → C22 ⊆ Aut C33 | 24 | 4 | C3^3:22(C4oD4) | 432,653 |
C33⋊23(C4○D4) = C62.90D6 | φ: C4○D4/C22 → C22 ⊆ Aut C33 | 72 | | C3^3:23(C4oD4) | 432,675 |
C33⋊24(C4○D4) = C62.91D6 | φ: C4○D4/C22 → C22 ⊆ Aut C33 | 72 | | C3^3:24(C4oD4) | 432,676 |
C33⋊25(C4○D4) = C62.93D6 | φ: C4○D4/C22 → C22 ⊆ Aut C33 | 72 | | C3^3:25(C4oD4) | 432,678 |
C33⋊26(C4○D4) = C62.96D6 | φ: C4○D4/C22 → C22 ⊆ Aut C33 | 24 | 4 | C3^3:26(C4oD4) | 432,693 |
C33⋊27(C4○D4) = C32×C4○D12 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C33 | 72 | | C3^3:27(C4oD4) | 432,703 |
C33⋊28(C4○D4) = C3×C12.59D6 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C33 | 72 | | C3^3:28(C4oD4) | 432,713 |
C33⋊29(C4○D4) = C62.160D6 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C33 | 216 | | C3^3:29(C4oD4) | 432,723 |
C33⋊30(C4○D4) = C32×D4⋊2S3 | φ: C4○D4/D4 → C2 ⊆ Aut C33 | 72 | | C3^3:30(C4oD4) | 432,705 |
C33⋊31(C4○D4) = C3×C12.D6 | φ: C4○D4/D4 → C2 ⊆ Aut C33 | 72 | | C3^3:31(C4oD4) | 432,715 |
C33⋊32(C4○D4) = C62.100D6 | φ: C4○D4/D4 → C2 ⊆ Aut C33 | 216 | | C3^3:32(C4oD4) | 432,725 |
C33⋊33(C4○D4) = C32×Q8⋊3S3 | φ: C4○D4/Q8 → C2 ⊆ Aut C33 | 144 | | C3^3:33(C4oD4) | 432,707 |
C33⋊34(C4○D4) = C3×C12.26D6 | φ: C4○D4/Q8 → C2 ⊆ Aut C33 | 144 | | C3^3:34(C4oD4) | 432,717 |
C33⋊35(C4○D4) = (Q8×C33)⋊C2 | φ: C4○D4/Q8 → C2 ⊆ Aut C33 | 216 | | C3^3:35(C4oD4) | 432,727 |